LARGE SCALE ELECTROMAGNETIC MODELING OF ACCELERATOR STRUCTURES & COMPONENTS USING HIGH PERFORMANCE COMPUTERS*

K. Ko, N. Folwell, Z. Li, B. McCandless, C.-K. Ng & M. Wolf

Numerical Modeling Group Accelerator Research Department-A Stanford Linear Accelerator Center

Y. Sun, W. Mi, M. Saparov & G. Golub

SCCM Program
Computer Science Department
Stanford University

Presented at PAC99, NYC, March 31, 1999.

* Work supported by U.S. DOE OCTR & HENP Divisions under contract DE-AC0376SF00515

Electromagnetic Code Development at SLAC

- Originated in NLC accelerator structure R&D 2D finite element eigensolver *YAP*, *Omega2*, for Detuned Structure (DS) design
- Continued with 2D parallel *Omega2P* to analyze dipole wakefields in DS and 3D *Omega3* for Damped, Detuned Structure (DDS) design
- Developed parallel *Omega3P* and parallel time-domain solver *Tau3P* under *DOE Grand Challenge* to perform *LARGE SCALE* simulations
- Propose support from *DOE Scientific Simulation Initiative (SSI)* to dramatically increase present effort towards developing advanced modeling tools to design next-generation accelerators

Application To Linear Collider Structure Design

• Optimized Detuned Cell

RF parameters

Omega2

 Detuned Structure (206 cells)

Transverse Wakefields

Omega2P

Damped Detuned Cell

RF parameters

Omega3

 DDS Structure (206 cells)

Transverse Wakefields

Omega3P

Large Scale Electromagnetic Simulations

DDS for the NLC

- Cell Design requires frequency error of 1 part in 10,000 with mesh size close to fabrication tolerance (no tuning of cell)
- Wakefield Analysis needs entire section (206 cells) modeling to verify the DDS scheme in suppressing emittance growth

Simulating these problems spans a range from 10⁶ to 10⁹ degrees of freedom!

"High-Resolution" design and "System-Scale" analysis are only possible on Massively Parallel Computers

Parallel Electromagnetic Field Solvers

Parallel Processing is necessary to enable *LARGE SCALE* simulations

Omega3P - 3D Parallel Eigensolver for calculating resonant modes of cavities

Tau3P - 3D Parallel Time-Domain Solver to simulate transmission structures

Solver features:

- C++ implementation
- Message Passing Interface (MPI) for communication (e.g. SGI/CRAY-T3E)
- Reuse existing parallel libraries (e.g. ParMETIS, AZTEC)
- Unstructured grid for conformal meshes (e.g. FE formulation)
- New solver algorithms for fast convergence & scalability
- Adaptive refinement to improve accuracy & optimize computing resources

Towards High Performance Computing!

High Performance Computing in Electromagnetics

SLAC experience:

- Parametric Geometry CAD models to facilitate optimization
- Mesh Generation impacts matrix conditioning/time-stepping
- Domain Decomposition partitioning tools for load balancing
- Parallel Solvers scalable algorithms with fast convergence
- Adaptive Refinement improve accuracy/optimize resources
- Visualization efficient post-processing of large data sets
- Performance/Error Analysis computer science/applied math

Since HPC is a limited, shared resource (e.g. T3E at NERSC), LARGE SCALE simulation productivity depends on successfully integrating the combined efforts of a multi-disciplinary team of physicists, applied mathematicians, computer scientists, software engineers, geometry builders Bottleneck is always caused by the weakest link!

Parameterized solid model

Engineering drawing

Parametric Solid model

- Interface to a variational solid modeler EM S/Intergraph
- tuner port and the plunger) Can resolve necessary features (e.g., small distance between the
- Easy to change plunger position

Mesh Generation

Size of meshes limited by workstation memory - <u>Parallel Mesh Generation</u>

Tetrahedral mesh for *Omega3P* from *SIMAIL* (Simulog)

RFQ Cavity for SNS

Hexahedral mesh for *Tau3P* from *CUBIT* (Sandia)

Input Coupler for NLC

Domain Decomposition

Partitioning to optimize load balance & minimize communication

Parallel Solver

Omega3P convergence on DDS example with 500K DOF's

Simulation Results for NLC Detuned Structure

initial mesh:

adaptive refinement:

1	0	Mesh level DOF
651,194	227,769	DOF
98 minutes	25 minutes	Solution time
6.2 GB	4.0 GB	Memory

Visualization

Parallel Rendering will be needed with LARGE data sets

Parallel Performance

Omega3P performance on DDS example with 500K DOF's

Capability Sharing

Support DOE Labs in designing next-generation accelerators (NLC, SNS, LCLS, Muon Collider, Light Sources)

"Client/Server Model with GUI front end" - NERSC, ANL & STAR Inc.

34-node PC Cluster

- Collaborative effort SLAC (ARDA, SCS, BaBar) & LBL (NERSC)
- Specs: 17 Dell 410 systems, each with dual 450 MHz Pentium II processors, 256 MB memory, one 9 GB disk connected with a Cisco 5505 Fast Ethernet switch
- Operating system: RedHat Linux version 2.0.36

Omega3P running on cluster using MPI

Performance is within 25% of T3E up to 16 processors

Possible low cost, scalable alternative to supercomputers

Effective resource for high resolution component design

Planned Areas of Work/Collaboration

Omega3P: Complex eigenvalues - in progress

Tau3P: Wakefields - in progress

Phi3P: Static solvers - starting

Particles: Tracking - surface physices (C. Birdsall/UCB)

Parallel mesh generation - Sandia & UCB

Domain decomposition - NERSC & NASA Ames

Parallel preconditioners - NERSC & UCB

Adaptive refinement - UT Austin

Parallel rendering - UC Davis

Performance analysis - NERSC

Electromagnetics server - NERSC, ANL & STAR Inc.

Related Papers in this Conference

Thursday Poster Session CONCOM D06:

THA67	OMEGA3P: A Parallel Eigensolver for the DOE Grand Challenge
	\mathcal{O}

THA68 TAU3P: A Parallel Time-Domain for the DOE Grand Challenge

THA72 3-D Optimization Using a Client/Server Software Topology

Friday Poster Session LINCOL A03:

FRA19 A Compact RF Power Coupler for the NLC Linac

FRA41 RDDS Cell Design and Optimization for the NLC Linac